\qquad

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

1. Perform the following conversions:
(a) $35^{\circ} 30^{\prime}$ to decimal degrees
(b) 46.75° to degrees, minutes, seconds
2. Perform the following conversions:
(a) $20^{\circ} 54^{\prime} 36^{\prime \prime}$ to decimal degrees
(b) 31.4296° to degrees, minutes, seconds
3. If the point $(5,12)$ is on the terminal side of an angle θ in standard position, find the values of the six trigonometric functions of θ.
4. If the point $(15,-8)$ is on the terminal side of an angle θ in standard position, find the values of the six trigonometric functions of θ.
5. Given that $\sin \theta=\frac{\sqrt{5}}{7}$, and θ is in QII, find the five remaining values of the six trigonometric functions of θ.
6. Given that $\sec \theta=-4$, and $\sin \theta>0$, find the five remaining values of the six trigonometric functions of θ.
7. Find the exact value of each variable in the figure:
8. Find the exact value of each variable in the figure:
9. Given the equation $\tan (\alpha)=\cot \left(\alpha+10^{\circ}\right)$, find all solutions in the interval $\left[0,360^{\circ}\right)$.
10. Given the equation $\cos \theta=\sin \left(2 \theta-30^{\circ}\right)$, find all solutions in the interval $\left[0,360^{\circ}\right)$.
11. Two ships leave a port at the same time. The first ship sails on a bearing of 32° at 16 knots (nautical miles per hour) and the second on a bearing of 122° at 24 knots. How far apart are they after 2.5 hours?
12. A ship leaves port and sails on a bearing of $\mathrm{N} 47^{\circ} \mathrm{E}$ for 3.5 hours. It then turns and sails on a bearing of $\mathrm{S} 43^{\circ} \mathrm{E}$ for 4 hours. If the ship's rate is 22 knots, find the distance that the ship is from port.
13. Compute h as indicated in the figure:
